Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(10):1076-1083, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2323056

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the etiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. In this study, Vero E6 and IPI-2I cells were pretreated with different concentrations of glycyrrhizin (GLY) for 2 hours, and then infected with different concentrations of SADSCoV, aiming to investigate the inhibitory effect of GLY on SADS-CoV. Western blot and TCID50 results revealed a significantly decreased N protein expression and viral titer, indicating that GLY can inhibit the infection of SADS-CoV. Vero E6 and IPI-2I cells were pretreated with different concentrations of GLY for 2 hours and infected with SADS-CoV. Western blot results showed that when the concentration of GLY was 0.8 mmol/L, the expression of N protein decreased significantly, indicating that GLY inhibited the invasion of the virus. At first, cells were treated with 0.4 mmol/L GLY, and cell samples were collected at 2 hours, 6 hours and 12 hours after being infected with SADS-CoV for analysis, and the expression of N protein were found to be significantly reduced at all points, indicating that GLY had a significant inhibitory effect on the replication of the virus. GLY is a competitive inhibitor of high mobility group box 1 (HMGB1), and the receptors of HMGB1 mainly include TLR4 and RAGE. Based on this fact, the mutant plasmid at the key sites of HMGB1 (C45S, C106S, C45/106S) and the siRNA of the RAGE receptor were transfected to Vero E6 cells and infected with SADS-CoV, and the cell supernatant and samples were harvested. The western blot and TCID50 results showed that the expression of N protein and the virus titer were decreased, suggesting that GLY exerts its function by affecting the binding of HMGB1/TLR4/RAGE during SADS-CoV infection. To further explore the signaling pathway through which GLY functions, Vero E6 and IPI-2I cells were inoculated with SADS-CoV, and cell samples were harvested, western blot was used to detect the changes of MAPK proteins. The results showed that the protein expression levels of p-p38, p-JNK and p-ERK were up-regulated in the early and late stages, indicating that the MAPK pathway was activated by SADS-CoV infection. Vero E6 and IPI-2I were pretreated with different concentrations of GLY and TLR4 inhibitor TAK for 2 hours and infected with SADS-CoV. Protein samples were harvested and analysed by western blot which showed a decreased p-JNK and N proteins, while other proteins showed no significant changes. These results indicated that GLY and TAK regulated the phosphorylation of JNK but did not regulate the phosphorylation of p38 and ERK. Also, Vero E6 cells were treated with HMGB1 antibody, the siRNA of HMGB1 and HMGB1 mutants plasmid, and infected with SADS-CoV. Protein samples were harvested, western blot results showed that phosphorylation of JNK decreased, indicating that HMGB1 affected JNK phosphorylation. Finally, Vero E6 and IPI-2I cells were pretreated with different concentrations of JNK inhibitor SP600125 to infect SADS-CoV, western blot, TCID50 and IFA results showed that the expression of N protein and virus titer, as well as virus replication were reduced, indicating that SP600125 inhibited virus replication. In conclusion, our results revealed that GLY can inhibit in vitro replication of SADS- CoV, mainly through the HMGB1/TLR4/JNK signaling pathway. The discovery of this pathway provides theoretical support for the research of novel anti-SADS-CoV drugs.

2.
Journal of the Chilean Chemical Society ; 67(3):5656-5661, 2022.
Article in English | CAB Abstracts | ID: covidwho-2326837

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, in December 2019 and quickly spread across the worldwide. It becomes a global pandemic and risk to the healthcare system of almost every nation around the world. In this study thirty natural compounds of 19 Indian herbal plants were used to analyze their binding with eight proteins associated with COVID -19. Based on the molecular docking as well as ADMET analysis, isovitexin, glycyrrhizin, sitosterol, and piperine were identified as potential herbal medicine candidates. On comparing the binding affinity with Ivermectin, we have found that the inhibition potentials of the Trigonella foenum-graecum (fenugreek), Glycyrrhiza glabra (licorice), Tinospora cordifolia (giloy) and Piper nigrum (black pepper) are very promising with no side-effects.

3.
Postepy Fitoterapii ; 2:107-119, 2022.
Article in Polish | CAB Abstracts | ID: covidwho-2292353

ABSTRACT

The study is a review of natural raw materials that can prevent infection and help treat viral infections, including those that cause COVID-19. The condition of not getting infected with pathogens that cause infections of the upper and lower respiratory tract is high the body resistance. An important element that influences the proper immunity of the body is the diet. The functioning of the immune system is improved by bee products, and plant materials: purple coneflower herb, flower and root, licorice root, aloe gel and Baikal skullcap root, as well as black cumin seed oil, chaga mushroom, lemon balm leaves and chamomile flowers. Strengthening immunity is conducive to maintaining a good mood and reducing stress. The antiviral activity has been confirmed for many plant materials, especially those containing essential oils. Natural products can be used for prevention and treatment. The country that copes best with the coronavirus epidemic is China, thanks to a combination of academic and natural medicine. The study quotes an excerpt from the "Handbook of COVID-19 Prevention and Treatment", prepared by Chinese doctors, with particular attention to the recipes used by them.

4.
Current Traditional Medicine ; 9(6) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2302254

ABSTRACT

Herbal plant extracts or purified phytocomponents have been extensively used to treat several diseases since ancient times. The Indian Ayurvedic system and Chinese traditional medicines have documented the medicinal properties of important herbs. In Ayurveda, the polyherbal formulation is known to exhibit better therapeutic efficacy compared to a single herb. This review focuses on six key ayurvedic herbal plants namely, Tinospora cordifolia, Withania somnifera, Glycyrrhiza glabra/Licorice, Zingiber officinale, Emblica officinalis and Ocimum sanctum. These plants possess specific phytocomponents that aid them in fighting infections and keeping body healthy and stress-free. Plants were selected due to their reported antimicrobial and anti-inflammatory effects in several diseases and effectiveness in controlling viral pathogenesis. An ad-vanced literature search was carried out using Pubmed and google scholar. Result(s): These medicinal plants are known to exhibit several protective features against various diseases or infections. Here we have particularly emphasized on antioxidant, anti-inflammatory, anti-microbial and immunomodulatory properties which are common in these six plants. Recent literature analysis has revealed Ashwagandha to be protective for Covid-19 too. The formulation from such herbs can exhibit synergism and hence better effectiveness against infection and related dis-eases. The importance of these medicinal herbs becomes highly prominent as it maintains the har-monious balance by way of boosting the immunity in a human body. Further, greater mechanistic analyses are required to prove their efficacy in fighting infectious diseases like Covid-19. It opens the arena for in-depth research of identifying and isolating the active components from these herbs and evaluating their potency to inhibit viral infections as polyherbal formulations.Copyright © 2023 Bentham Science Publishers.

5.
Natural Product Communications ; 17(6), 2022.
Article in English | EMBASE | ID: covidwho-2299153

ABSTRACT

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is causing coronavirus disease 2019 (COVID-19) pandemic. Ancient Chinese herbal formulas are effective for diseases caused by viral infection, and their effects on COVID-19 are currently being examined. To directly evaluate the role of Chinese herbs in inhibiting replication of SARS-CoV-2, we investigated how the phytochemicals from Chinese herbs interact with the viral RNA-dependent RNA polymerase (RdRP). Total 1025 compounds were screened, and then 181compounds were selected for molecular docking analysis. Four phytochemicals licorice glycoside E, diisooctyl phthalate, (-)-medicocarpin, and glycyroside showed good binding affinity with RdRp. The best complex licorice glycoside E/RdRp forms 3 hydrogen bonds, 4 hydrophobic interactions, 1 pair of Pi-cation/stacking, and 4 salt bridges. Furthermore, docking complexes licorice glycoside E/RdRp and diisooctyl phthalate/RdRp were optimized by molecular dynamics simulation to obtain the stable conformation. These studies indicate that they are promising as antivirals against SARS-CoV-2.Copyright © The Author(s) 2022.

6.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269814

ABSTRACT

Background: SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide;therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives: This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method(s): We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Result(s): We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion(s): Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.Copyright © 2021

7.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2254520

ABSTRACT

Background: Novel coronavirus pneumonia COVID-19 has become a serious threat to human health. Traditional Chinese Medicine (TCM) has a good clinical effect in the treatment of COVID-19, with a high effective rate and a low rate of turning to the serious stage. Objective(s): We generated the web-accessed anti-COVID-19 TCM database to provide the anti-COVID-19 TCM information to develop effective drugs for the treatment of COVID-19. Method(s): Herein, we collected these prescriptions data by querying the CNKI and Wanfang Chinese da-tabases, the clinical guidance for COVID-19 pneumonia diagnosis and treatment, and further set up the web-accessible anti-COVID-19 TCM database. Result(s): Altogether, 293 different prescriptions are applied in four different COVID-19 stages of treat-ment, and the prevention of COVID-19 is composed of 452 TCM components. Conclusion(s): The database provides comprehensive information for anti-COVID TCM and thus would help to investigate novel ways to develop new anti-COVID-19 agents.Copyright © 2022 Bentham Science Publishers.

8.
Pharmacognosy Journal ; 14(3):681-689, 2022.
Article in English | CAB Abstracts | ID: covidwho-2283973

ABSTRACT

Background: Antiviral vaccine is not effective, synthetic antiviral drugs are highly toxic, leading to increased interest in herbal medicines as promising antiviral drugs. Recently, Vipdervir has been developed from medicinal herbs with the aim to support and treat diseases caused by viruses such as H5N1 and SARSCoV- 2. In the present study, we assessed Vipdervir's antiviral activity against H5N1 and SARS-CoV-2. In addition, we also evaluated the acute toxicity and repeated dose toxicity of Vipdervir in mice and rabbits, respectively. Methods: H5N1 inhibitory effect of Vipdervir was assessed using hemagglutination inhibition assay. Vipdervir's SARS-CoV-2 inhibitory effect was evaluated by Plaque Reduction Neutralization assay. Acute and repeated dose oral toxicities of Vipdervir were determined according to OECD 423 and OECD 407 guidelines, respectively. Results: Data show that Vipdervir is effective against both H5N1 and SARSCoV- 2. At concentrations of 3 mg/mL and 5 mg/mL Vipdervir completely inhibits H5N1. At a concentration of 50 g/mL Vipdervir showed an inhibitory effect on SARS-CoV-2. Acute toxicity data revealed that the LD50 of Vipdervir is greater than 35200 mg/kg, b.wt. in mice. Repeated toxicity data indicated that Vipdervir did not induce significant differences in body weight gain, hematology and clinical biochemistry in compared to the control group. The No Observed Adverse Effect Level of Vipdervir is greater than 613.8 mg/kg b.wt./day in rabbits. No delayed toxicity effects of Vipdervir were observed. Conclusion: Vipdervir capsules were found to be antiviral effective and relatively safe in the tested doses and experimental conditions.

9.
Coronaviruses ; 2(12) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2281660

ABSTRACT

Background: The recent outbreak of the COVID-19 pandemic has raised a global health concern due to the unavailability of any vaccines or drugs. The repurposing of traditional herbs with broad-spectrum anti-viral activity can be explored to control or prevent a pandemic. Objective(s): The 3-chymotrypsin-like main protease (3CLpro), also referred to as the "Achilles' heel" of the coronaviruses (CoVs), is highly conserved among CoVs and is a potential drug target. 3CLpro is essential for the virus' life cycle. The objective of the study was to screen and identify broad--spectrum natural phytoconstituents against the conserved active site and substrate-binding site of 3CLpro of HCoVs. Method(s): Herein, we applied the computational strategy based on molecular docking to identify potential phytoconstituents for the non-covalent inhibition of the main protease 3CLpro from four different CoVs, namely, SARS-CoV-2, SARS-CoV, HCoV-HKU1, and HCoV-229E. Result(s): Our study shows that natural phytoconstituents in Triphala (a blend of Emblica officinalis fruit, Terminalia bellerica fruit, and Terminalia chebula fruit), namely chebulagic acid, chebulinic acid, and elagic acid, exhibited the highest binding affinity and lowest dissociation constants (Ki), against the conserved 3CLpro main protease of SARSCoV-2, SARS-CoV, HCoV-HKU1, and HCoV-229E. Besides, phytoconstituents of other herbs like Withania somnifera, Glycyrrhiza glabra, Hyssopus officinalis, Camellia sinensis, Prunella vulgaris, and Ocimum sanctum also showed good binding affinity and lower Ki against the active site of 3CLpro. The top-ranking phyto-constituents' binding interactions clearly showed strong and stable interactions with amino acid residues in the catalytic dyad (CYS-HIS) and substrate-binding pocket of the 3CLpro main proteases. Conclusion(s): This study provides a valuable scaffold for repurposing traditional herbs with anti--CoV activity to combat SARS-CoV-2 and other HCoVs until the discovery of new therapies.Copyright © 2021 Bentham Science Publishers.

10.
Current Traditional Medicine ; 9(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2264998

ABSTRACT

Background: Infectious diseases have posed a major threat to human survival for centu-ries and can devastate entire populations. Recently, the global outbreak of COVID-19 has increased exponentially, affecting more than 200 countries and millions of lives since the fall of 2019, largely due to the ineffectiveness of existing antiviral therapies. WHO announced it a public health emer-gency of international concern. A significant waiting period in antiviral therapy hindered by the rapid evolution of severe acute respiratory syndrome-coronavirus-2 aggravated the situation ensuing imposition of strict laws (e.g., communal dissociation, international travel restrictions, and mainte-nance of hygiene) that would help in inhibiting further outspread of COVID-19. Ayurveda system of medicine offers a holistic approach to the COVID-19 pandemic. Objective(s): This review aims to highlight the potential of medicinal herbs and Ayurvedic drugs as the remedial approach for viral diseases, such as COVID-19. Method(s): We reviewed the literature from journal publication websites and electronic databases, such as Bentham, Science Direct, Pub Med, Scopus, USFDA, etc. Result(s): The drugs used in the traditional system of medicine have the potential to prevent and cure the infected patient. Ayurvedic therapies are known for regulating immunity and rejuvenation properties that behold much promise in the management of COVID-19 disease. Government of India, Ministry of AYUSH recommends some precautionary fitness measures and an increase in immunity with special reference to respiratory health. Conclusion(s): While there is no medication for COVID-19 as of now, taking preventive measures and boosting body immunity is highly recommended. A number of medicinal plants that play an im-portant role in revitalizing the immune system are easily accessible in home remedies.Copyright © 2023 Bentham Science Publishers.

11.
Front Pharmacol ; 14: 1102940, 2023.
Article in English | MEDLINE | ID: covidwho-2251215

ABSTRACT

Background: As February 2023, SARS-CoV-2 is still infecting people and children worldwide. Cough and dyspnea are annoying symptoms almost present in a large proportion of COVID-19 outpatients, and the duration of these symptoms might be long enough to affect the patients' quality of life. Studies have shown positive effects for noscapine plus licorice in the previous COVID-19 trials. This study aimed to assess the effects of the combination of noscapine and licorice-for relieving cough in outpatients with COVID-19. Methods: This randomized controlled trial was conducted on 124 patients at the Dr. Masih Daneshvari Hospital. Participants over 18 years of age with confirmed COVID-19 and cough were allowed to enter the study if the onset of symptoms was less than 5 days. The primary outcome was to assess the response to treatment over 5 days using the visual analogue scale. Secondary outcomes included the assessment of cough severity after 5 days using Cough Symptom Score, as well as the cough-related quality of life and dyspnea relieving. Patients in the noscapine plus licorice group received Noscough® syrup 20 mL every 6 h for 5 days. The control group received diphenhydramine elixir 7 mL every 8 h. Results: By day five, 53 (85.48%) patients in the Noscough® group and 49 (79.03%) patients in the diphenhydramine group had response to treatment. This difference was not statistically significant (p-value = 0.34). The presence of dyspnea was significantly lower in the Noscough® group versus diphenhydramine at day five (1.61% in the Noscough® group vs. 12.9% in the diphenhydramine group; p-value = 0.03). The cough-related quality of life and severity also significantly favored Noscough® syrup (p-values <0.001). Conclusion: Noscapine plus licorice syrup was slightly superior to diphenhydramine in relieving cough symptoms and dyspnea in the COVID-19 outpatients. The severity of cough and cough-related quality of life were also significantly better in the noscapine plus licorice syrup. Noscapine plus licorice may be a valuable treatment in relieving cough in COVID-19 outpatients.

12.
Pharmaceutics ; 15(2)2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2225496

ABSTRACT

Viruses and bacteria can disrupt normal human functions; therefore, ways to use the beneficial properties of plants to promote health are constantly being researched. Plant materials that accumulate biologically active compounds can be used to create a new pharmaceutical form. This study aimed to investigate the biological activity of selected plant extracts and essential oil and to produce microcapsules. The main compounds in extracts and essential oil were determined using chromatographic methods, antioxidant activity was evaluated spectrophotometrically, antimicrobial activity was assessed by monitoring the growth of nine pathogens, and the antiviral effect on infected bird cells with coronavirus was evaluated. Trifolium pratense L. extract had the highest antioxidant (26.27 ± 0.31 and 638.55 ± 9.14 µg TE/g dw by the DPPH and ABTS methods, respectively) and antiviral activity (56 times decreased titre of virus). Liquorice extract expressed antibacterial activity against Gram-positive pathogens and the highest antioxidant activity using the FRAP method (675.71 ± 4.61 mg FS/g dw). Emulsion stability depended on excipients and their amount. Microcapsules with extracts and essential oil were 1.87 mm in diameter, and their diameter after swelling was increased more than two times in intestinal media, while less than 0.5 times in gastric media.

13.
Front Immunol ; 13: 945583, 2022.
Article in English | MEDLINE | ID: covidwho-2154720

ABSTRACT

Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%-40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.


Subject(s)
COVID-19 , Glycyrrhiza , Animals , Cricetinae , Cytokines/metabolism , Glycyrrhiza/metabolism , Humans , Interleukin-17 , Interleukin-4 , Mice , Plasminogen Activator Inhibitor 1 , RNA, Messenger , Reactive Oxygen Species , SARS-CoV-2
14.
Otolaryngology - Head and Neck Surgery ; 167(1 Supplement):P144-P145, 2022.
Article in English | EMBASE | ID: covidwho-2064489

ABSTRACT

Introduction: Olfactory dysfunction is a common symptom associated with COVID-19 infection. While often transient, nearly 1 in 8 patients experience persistent dysfunction after initial infection resolution. Given the known association between impaired olfaction and mild cognitive impairment (MCI), this persistent COVID-19 olfactory dysfunction may impede early detection of cognitive decline. Method(s): Patients with confirmed COVID-19-associated hyposmia (n=73), MCI (n=58), and normal controls (n=86) were prospectively enrolled. Demographic data were collected alongside formal olfactory testing via AROMA (Affordable Rapid Olfaction Measurement Assay) at time of initial enrollment. MCI was assessed via MoCA (Montreal Cognitive Assessment). Multivariate logistic regressions were utilized to evaluate for associations between variables and etiology of olfactory dysfunction. Result(s): After controlling for age and gender, when compared against normal controls, the inability to smell licorice, cinnamon, and lemon at the lowest 3 concentrations increased odds of COVID-19 hyposmia by 10.8 (95% CI, 4.6-25.6), 5.7 (95% CI, 2.7-11.7), and 5.3 (95% CI, 2.6-10.8), respectively. While the inability to smell coffee (9.9 odds ratio [OR];95% CI, 2.02-48.1), eucalyptus (6.7 OR;95% CI, 2.2-20.0), and rose (4.0 OR;95% CI, 1.7-9.7) were associated with MCI, decreased ability to smell licorice, cinnamon, and lemon were not. When combined into a composite score and compared against controls, decreased detection of licorice, cinnamon, and lemon was associated with a 16.5 OR (95% CI, 6.6-41.3) for COVID-19 hyposmia. This composite score was not significantly associated with MCI (1.2 OR;95% CI, 0.6-2.2) and, as such, performed well at discriminating between COVID-19 and MCI patients (receiver operating characteristic area under the curve=0.76). Conclusion(s): Distinct patterns of impaired olfaction were noted for COVID-19. We show that this etiology-specific phenotype has good discriminative performance when differentiating from MCI-associated hyposmia, which may allow for continued utilization of olfactory screening for MCI even among those with previous COVID-19 infection.

15.
Otolaryngology - Head and Neck Surgery ; 167(1 Supplement):P282, 2022.
Article in English | EMBASE | ID: covidwho-2064404

ABSTRACT

Introduction: COVID-19 is known to cause olfactory dysfunction (OD). African American individuals have been disproportionately impacted by the COVID-19 pandemic. To reduce health disparities related to OD, it is important to have accurate objective testing, especially for African American individuals, who have a higher disease burden. Our objective is to examine olfactory performance in African American and White study participants by comparing individual scent scores to assess potential cultural appropriateness of scent selection. Method(s): This was a cross-sectional study of healthy participants from June 2021 to April 2022. Two smelling tests were used: Affordable Rapid Olfactory Measurement Array (AROMA) and Sniffin' Sticks (SST-12). Pearson correlation and chi2 tests were used to detect statistical differences. African American and White participants without sinonasal disease aged 18+ were recruited from outpatient clinics at Kansas University Medical Center and the community. The main outcome for our study is olfactory performance on smelling tests. Result(s): Of the 102 participants, 46 were African American and 56 were White. AROMA and SST-12 scores were significantly correlated in African American (P<.01) and White (P<.01) participants. African American participants scored significantly lower than their White counterparts on both tests (P<.01). AROMA, mean scores were 64.2 and 75.5 for African American and White participants, respectively. SST-12 mean scores were 84.2 and 89.9 for African American and White participants, respectively. On SST-12, 60.9% of African American and 30.4% of White participants were hyposmic, (P<.05). For 6 AROMA scents (licorice, orange, lavender, cinnamon, clove, and rosemary) and 1 SST-12 scent (pineapple) African American participants scored significantly lower than White participants (P<.05). Conclusion(s): When compared with White participants, African American participants performed worse on both smelling tests and a greater proportion were considered hyposmic. African American participants performed significantly worse than their White counterparts on several scents, raising the issue of cultural appropriateness of scents used in olfactory testing.

16.
Journal of Xinyang Normal University Natural Science Edition ; 33(2):210-219, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-2055548

ABSTRACT

ADMEN prediction was used to perform the first round screening from Traditional Chinese Medicine Database and Analysis Platform(TCMSP). then VASARA and molecular docking were used to screen again based on targets spike glyoprotein and angiotensin converting enzyme 2. and finally the interaction between target and drug was analyzed. 425 candidate ingredients of traditional Chinese medicine were screened from TCMSP database. when targeted by Spike glycoprotein. 12 ingredients were screened. They were contained artemisia apiacea salvia miltiorrhiza bge. scutellaria baicalensis. pinellia ternate. liquorice. radixImplettri and other traditional Chinese medicine. With ACE2 as the target. 77 components of traditional Chinese medicine were screened out. including salvia miltiorrhiza bge scutellaria baicalensis. pinellia ternatc. Liquorice. radix bupleuri. ephedra and other traditional Chinese medicine. At last. salviolone and dihydrotanshinlactone were found to be the potential inhibitor.

17.
Journal of Drug and Alcohol Research ; 10(236120(2), 2021.
Article in English | CAB Abstracts | ID: covidwho-2045354

ABSTRACT

COVID-19 is an infectious disease caused by a newly discovered CORONAVIRUS. It's a type of Severe Acute Respiratory Syndrome. The symptoms of SARS-nCOV-2 cause dry cough, fever, Tiredness, and difficulty of breathing (severe cases). We can cure the symptoms and defects of the whole body (vata, pitta, kapha) caused by the system and its qualitative therapists.

18.
Chinese Traditional and Herbal Drugs ; 53(15):4781-4794, 2022.
Article in Chinese | EMBASE | ID: covidwho-2033401

ABSTRACT

Objective To explore the application pattern and mechanism of medicine and food homologous traditional Chinese medicine (TCM) against modern viral diseases. Methods The method of literature mining was applied based on the characteristics of modern viral diseases, combining with ancient books and modern prescriptions for the prevention and treatment of viral diseases to build a relevant prescription database. Then SPSS and R language were used to analyze the high-frequency medicine and food homologous TCM and high confidence medicine and food homologous prescriptions in these prescriptions, and cluster analysis was carried out. The antiviral characteristic active ingredients of high-frequency medicinal and food homologous TCN were identified and analyzed, and the action mechanism of active ingredients against modern viral diseases was evaluate by network pharmacology. Results In the prevention and treatment of modern viral diseases, Gancao (Glycyrrhizae Radix et Rhizoma)-Chenpi (Citri Reticulatae Pericarpium)-Fuling (Poria) had the highest confidence, Glycyrrhizae Radix et Rhizoma-Jiegeng (Platycodonis Radix) had the highest support. At the same time, the prescriptions were clustered and analyzed to obtain Jinyinhua (Lonicerae Japonicae Flos)-Huangqi (Astragali Radix)-Huoxiang (Agastache rugosa), Glycyrrhizae Radix et Rhizoma-Xingren (Armeniacae Semen Amarum)-Poria-Platycodonis Radix-Citri Reticulatae Pericarpium, Ganjiang (Zingiberis Rhizoma)-Renshen (Ginseng Radix et Rhizoma), Zisu (Perilla frutescens)-Gegen (Puerariae Lobatae Radix), Lugen (Phragmitis Rhizoma)-Sangye (Mori Folium), Shengjiang (Zingiberis Rhizoma Recens)-Dazao (Jujubae Fructus) clustering new prescription. The core action targets of EGFR, CASP3, VEGFA, STAT3, MMP9, HSP90AA1, mTOR, PTGS2, MMP2, TLR4, MAPK14, etc were identified. The action mechanism involved human cytomegalovirus infection, coronavirus disease-coronavirus disease 2019 (COVID-19), etc. The core action pathway were phosphatidylinositol-3/kinase protein kinase B (PI3K/Akt) signal pathway, mitogen activated protein kinase (MAPK) signal pathway, interleukin-17 (IL-17) signal pathway, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signal pathway, etc. Conclusion Through data mining, six new prescriptions for preventing and controlling modern viral diseases were obtained, and the mechanism of action was preliminarily discussed, which provided some reference for the research and development of medicine and food homologous TCM prescriptions for the prevention and treatment of viral epidemics and related health products.

19.
Journal of Internal Medicine of Taiwan ; 32(4):281-288, 2021.
Article in Chinese | EMBASE | ID: covidwho-2033398

ABSTRACT

In the face of the COVID-19 pandemic, there is still a lack of miracle drugs for treatment. Repurposing drugs such as Remdesivir and corticosteroids to treat COVID-19 are being studied. Traditional Chinese medicine was widely used during the outbreak of Severe Acute Respiratory Syndrome (SARS) coronavirus infection in China in 2003. It was found that standard medical treatment combined with Chinese medicine treatment may improve the symptoms of SARS patients and speeding resolution of lung infiltration. The commonly used prescriptions for preventing the coronavirus infection are Sangjuyin plus Yupingfeng powder. Various Traditional Chinese medicines with potential to fight SARS-CoV-2 include Liquorice Root and Rhizome, Rhubarb, Heartleaf Houttuynia Herb, Indi-gowoad Root, Tangerine Peel, Scutellaria Root, and Red Sage Root and Rhizome etc. In addition, Chinese patent medicines including Shuanghuanglian Oral liquid, Lianhua Qingwen Capsule, Jinhua Qinggan Granule and Taiwan Chingguan Yihau are recognized as plausible agents for the treatment of novel coronavirus pneumonia. The antiviral, anti-inflammatory and immunomodulatory effects of selected Chinese herbal drugs may attribute to their inhibiting the binding of the coronavirus spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor, inhibiting key enzymes such as 3-chymotrypsin-like protease and ribonucleic acid (RNA)- dependent RNA polymerase during viral replication, and reducing pro-inflammatory cytokines. Since most of the relevant studies mentioned the potential anti-SARS-CoV-2 activity of these agents were only in vitro and animal experiments, more randomized double-blind controlled trials are needed to provide reliable evidence of clinical efficacy in future.

20.
Integr Med Res ; 11(3): 100869, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2028122

ABSTRACT

Background: The global attention to the capacities of traditional medicine for alleviating the clinical manifestations of COVID-19 has been growing. The present trial aimed to evaluate the efficacy and safety of a Persian herbal medicine formula among patients with COVID-19. Methods: The present trial was conducted in Afzalipour hospital, Kerman, Iran, from June to September 2020. Hospitalized COVID-19 patients were randomly divided into intervention (Persian herbal medicine formula + routine treatment) or control (only routine treatment) groups. The intervention group received both capsule number 1 and 2 every 8 hours for 7 days. Capsule number 1 contained extract of the Glycyrrhiza glabra, Punica granatum, and Rheum palmatum, and the second capsule was filled by Nigella sativa powder. Participants were followed up to 7 days. The primary outcome was the number of hospitalization days, while cough, fever, and respiratory rate, days on oxygen (O2) therapy, and mortality rate were considered as the secondary outcomes. Results: Eighty-two patients were enrolled to the study, while 79 cases completed the trial and their data were analyzed (mean age: 59.1 ± 17.1 years). Based on the results, the Persian medicine formula decreased the mean hospitalization days, so that the mean difference of length of hospitalization as primary outcome was 2.95 ± 0.43 days. A significant clinical improvement was observed regarding dyspnea, need for O2) therapy, and respiratory rate in the intervention group. No adverse effects were reported. Conclusion: The present study supported the use of the Persian medicine formula as an adjuvant therapy for hospitalized COVID-19 patients. Study registration: Iranian Registry of Clinical Trials (www.irct.ir): IRCT20200330046899N1. Study registration: Iranian Registry of Clinical Trials (www.irct.ir): IRCT20200330046899N1.

SELECTION OF CITATIONS
SEARCH DETAIL